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The low Reynolds number buoyancy-driven translation of a deformable drop towards 
and through a fluid-fluid interface is studied using boundary integral calculations and 
laboratory experiments. The Bond numbers characteristic of both the drop and the 
initially flat fluid-fluid interface are sufficiently large that the drop and interface 
become highly deformed, substantial volumes of fluid may be entrained across the 
interface, and breakup of both interfaces may occur. Specifically, drops passing 
from a higher- to lower-viscosity fluid are extended vertically as they pass through 
the interface. For sufficiently large drop Bond numbers, the drop may deform 
continuously, developing either an elongating tail or enlarging cavity at the back of 
the drop, analogous to the deformation characteristic of a single deformable drop 
in an unbounded fluid. The film of fluid between the drop and interface thins most 
rapidly for those cases that the drop enters a more viscous fluid or has a viscosity 
lower than the surrounding fluids. In the laboratory experiments, bubbles entering 
a less viscous fluid are extended vertically and may break into smaller bubbles. The 
column of fluid entrained by particles passing through the interface may also break 
into drops. Further experiments with many rigid particles indicate that the spatial 
distribution of particles may change as the particles pass through interfaces : particles 
tend to form clusters. 

1. Introduction 
The low Reynolds number motion of drops, bubbles and rigid particles passing 

through fluid-fluid interfaces occurs in a variety of industrial separation systems and 
naturally occurring density- and viscosity-stratified multiphase systems. A model 
problem, consisting of a single deformable drop approaching and passing through 
a deformable initially planar fluid-fluid interface, is considered in this paper, and 
extensions to multiple particle systems are discussed. Hereafter, we refer to the 
initially planar fluid-fluid interface as 'the interface'. Features of the model problem 
which are of interest include 

(1) the rate at which a drop passes through an interface, 
(2) the thickness of the film of fluid coating a drop as it passes through an interface, 
(3) whether a drop remains intact and connected or breaks into smaller drops, 
(4) the volume of fluid entrained by a drop as it passes through an interface, 
( 5 )  the effect of the entrained fluid on the motion of additional drops through the 
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interface, 
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FIGURE 1. Different features characteristic of the motion of bubbles through fluid-fluid interfaces. 
The experimental results illustrate features ( 2 4 )  listed in the introduction. In (a) and (b) ,  a n  air 
bubble translates through very viscous corn syrup towards a lower-viscosity layer of polyhutene 
(viscosity ratio between polybutene and corn syrup is 0.15). In (c) and (d), an air bubble translates 
through glycerin towards a higher-viscosity layer of polyhutene (viscosity ratio between polybutene 
and glycerin is 40). The four photographs presented above illustrate several of the features of the 
flow problem we consider. Complete sequences of photographs corresponding to (a,b) and (c ,d)  are 
shown in figures 11 and 12, respectively. 

(6) the effect of an interface on sedimenting suspensions. 
Here we consider the motion of drops and bubbles through an interface at small 

Reynolds numbers, 

(1.1) 
P Ua 92 = -41, 

c1 
where U is the rise speed of the drop, a is a characteristic dimension of the drop, i.e. 
the drop radius, and p and p are the density and viscosity of the fluid surrounding 
the drop, respectively. In the present study we are concerned with the limit in which 
large interface distortions occur to either the drop, the interface, or both fluid-fluid 
interfaces. For a fluid-fluid interface characterized by a density difference Ap, large 
distortions occur when the Bond number is large, 

a=- Apga2 > 0(1), 
0 

where 0 is the interfacial tension and g is the gravitational acceleration. Typically, 
in engineering applications, ,49 > 1 corresponds to particle radii greater than a few 
millimetres. However, large Bond numbers are also characteristic of systems with 
miscible fluids or low values of interfacial tensions such as the interfacial tension 
between oils with similar chemical compositions. The large Bond number motion 
of drops and bubbles through interfaces may also be relevant to understanding the 
ascent of mantle plumes or descent of subducted slabs through the Earth’s mantle 
(e.g. Manga, Stone & O’Connell 1993). 

Several previous detailed studies of this class of flow/free-boundary problems have 
been numerical, though limited to modest interface distortions: Lee & Leal (1982) and 
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Geller, Lee & Leal (1986) studied the motion of a rigid sphere towards and through 
a deformable interface; Chi & Leal (1989) studied the motion of a deformable drop 
towards its homophase (a fluid layer with the same chemical composition as the 
drop); Pozrikidis (1990b) and Ascoli, Dandy & Leal (1990) studied the motion of 
a drop normal to a flat rigid surface, and Koch & Koch (1995) studied the motion 
of a drop normal to a flat free-slip surface. Finite Reynolds number influences were 
studied numerically by Shopov & Minev (1992). Published experimental research on 
the low Reynolds number motion of drops through interfaces has also been limited to 
drops and bubbles approaching their homophase and rigid spheres passing through 
interfaces (see summaries in Chi & Leal 1989 and Geller et al. 1986). Approximate 
analytical results for a sphere translating normal and parallel to a deformable, though 
nearly planar, interface were developed by Lee & Leal (1982) using perturbation 
methods. A combination of lubrication theory and boundary integral methods was 
used by Yiantsios & Davis (1990) to study the close approach of a nearly spherical 
deformable drop to a nearly flat deformable interface. A significant contribution of 
these studies is the illustration of the complete evolution of the particle-interface 
interaction including the details of film drainage. 

In figure 1 we present four photographs from two different experiments in order to 
highlight different aspects of the complete evolution of a bubble-interface interaction; 
the four photographs are selected from complete sequences of photographs shown in 
figures 11 and 12 in 5 4. In the experiments shown in figure l(a,b), an air bubble 
translates in very viscous corn syrup (B = lop3) towards and through a less dense, 
lower-viscosity layer of polybutene. In figure l(a) we observe that the bubble is 
extended vertically as it passes through the interface. In figure l(b) we show a photo- 
graph, taken at a later time, in which the large bubble has broken into smaller bubbles, 
and a long narrow column of the more dense lower fluid has been entrained across the 
interface. In the experiments shown in figure l(c,d), an air bubble translates through 
glycerin (B = 1) towards a higher-viscosity layer of polybutene. In figure l(c) a thin 
layer of glycerin coats the air bubble as it passes through the interface. In figure l(d) 
we show a photograph, taken at a later time, in which the entrained column of glycerin 
has broken into a sequence of smaller drops by a capillary (Rayleigh) instability. 

The four photographs presented in figure 1 illustrate several features of the mul- 
tiphase flow problem including large deformation, penetration into the upper layer, 
breakup, and entrainment. Boundary integral numerical simulations presented in 6 3 
allow us to consider a wide range of model parameters, extend previous numerical 
studies to the long-time and large deformation limit for drops penetrating interfaces, 
and obtain quantitative details of the flow. In 4 we consider the entire evolution of 
the interface as a bubble or rigid sphere passes through the interface. The experimen- 
tal results allow us to obtain insight into dynamics following breakup; in particular 
we study breakup of both the drop and interface (e.g. figure 1). The numerical and 
experimental results of 5 3 and 5 4 are used in 5 5 to explain the motion of several 
rigid spheres and bubbles through fluid-fluid interfaces. 

2. Problem formulation 
The motion of a drop passing through a stably stratified fluid-fluid interface is 

modelled by considering three fluid domains, as shown in figure 2. The boundary 
integral method is used to numerically study the free-boundary flow problem. We 
denote the three fluid domains by subscripts 1, 2 and 3 for the lower fluid, the drop, 
and the upper fluid, respectively. For completeness we summarize the basic equations. 
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FIGURE 2. Geometry of the dropinterface problem. The initially planar fluid-fluid interface is 
referred to as the interface. The unit normal vector n is outward from the drop and directed into 
the lower fluid away from the interface. In the calculations the initial position of the drop is h = 4a 
below the initially flat interface S2. 

In the low Reynolds number limit the flow in each fluid domain satisfies the Stokes 

(2.1) 
where u is the fluid velocity, p is the fluid pressure, T is the modified stress tensor 
defined to incorporate the body force pg, i.e. 7 = -PI+ p[Vu + (VU)~] + pg . XI, x 
is the position vector, p is the fluid viscosity, and the subscript i denotes fluids 1, 2 
or 3. As the stress tensor T is defined to be divergence free, the body force pg thus 
appears in the boundary conditions, equations (2.5) and (2.6) below. 

and continuity equations 

V . Ti = piV2ui - Vpi + pig = 0 and V . ui = 0, 

We require that the velocity decays to zero far from the drop, 

u1 -+ 0 as 1x1 -+ co, (2.2) 

u3 -+ 0 as 1x1 -+ co, 
and that the velocity is continuous across all interfaces, 

u2 = u1 on S1 and u3 = u1 on S2, (2.4) 
where S1 is the surface bounding the drop and S2 is the interface. The stress jump 
[n . T I i  across interface Si is balanced by the stresses arising from density contrasts 
and interface curvature V, . n: 

(2.5) 

(2.6) 
where ci denotes the constant interfacial tension, n is the unit normal directed 
into the lower fluid, and V, = ( I  - nn) * V is the gradient operator tangent to the 
interface. Additionally there is a kinematic constraint, expressed with the Lagrangian 
description 

[n . T I ,  = n .  T1 - n .  T2 = g1 (V, . n)n + nAp2g .  x, x E S1 

En . T I 2  = n. 71 - n . T3 = g2 (V, . n)n + nAp3g . X, x E S2, 

dx 
= u(x),  x E S1 and S2. (2.7) - 

dt 
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The equations are made dimensionless by choosing the characteristic length as the 
undeformed drop radius a, the velocity scale as Ap2ga2/p and an advective timescale 
as p/Ap;?ga. For a given initial configuration (dimensionless separation distance h / a  
in figure 2), five dimensionless parameters characterize the flow: the viscosity ratios, 
A and y indicated in figure 2, two Bond numbers 

and a buoyancy parameter, defined as 

The dimensionless Hadamard-Rybczynski rise speed in the lower fluid is 3(31 + 
2)/2( 1 + A) and in the upper fluid is 3(3A + 2y)( 1 - jJ)/2(A+ y). The frequently studied 
problem of a drop approaching its homophase corresponds to 1 = y ,  991 = 992 and 
p = 1 (e.g. Chi & Leal 1989). For p > 1 the drop will spread beneath the interface. 
The limit of p,>l and y = 0 is studied by Koch & Koch (1995). We are interested 
in f l  < 1 so that the drop passes through the interface and large interface distortions 
occur. 

Stokes equations may be recast as integral equations for the interfacial velocities 
u(x)  for x E S, ,S2 .  The integral representations for the velocity, and associated 
integral equations for the interfacial velocities for a system containing two fluid-fluid 
interfaces, are given by (Tanzosh, Manga & Stone 1992) 

En. T I l  . J dSy - (1-1) J n .  K .  u dSy - 111.. T I 2 .  J dS, 
s1 

(2.10) 

where J and K are known kernels for velocity and stress, respectively, and y is the 
integration variable. 

The interfacial velocities are determined by solving equation (2.10) using standard 
numerical collocation procedures and the time-dependent motion of the interface is 
determined using the kinematic condition (2.7). For the axisymmetric configuration 
studied in 0 3, the azimuthal integration may be performed analytically (Lee & Leal 
1982) reducing (2.10) to a line integral. Integrations are performed using Gauss- 
Legendre quadrature. The interface shapes are described by taut cubic splines (de 
Boor 1978) parameterized in terms of arc length. Both fluid-fluid interfaces are 
represented numerically by 100 collocation points which are uniformly distributed on 
the drop, but concentrated on the interface in regions where the separation distance 
from the drop is small. Calculations are continued until the separation distance 
between the interfaces is smaller than the distance between collocation points along 
either interface. In the physical system, non-hydrodynamic forces due to electrostatic 
or intermolecular effects typically become important for separation distances less 
than about 10 nm. In the numerical solution of the boundary integral equations, the 
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(a) A = 10 (b) A = 1 (c) a = 0.1 

FIGURE 3. Effect of changing the ratio of drop to lower fluid viscosity for 1 = 10, 
1 and 0.1; y = 0.1, /l = 0.2, Bl = 20 and B2 = a. 

initially planar interface, S2, is truncated at a distance of 15 drop radii from the axis 
of symmetry. Results computed for an interface that extends to distances between 10 
and 50 drop radii show very little variation. A more detailed discussion of the effects 
of interface truncation is given by Lee & Leal (1982). Further details of the numerical 
approach are given by Manga (1994). 

3. Results 
Below we present numerically calculated results for the buoyancy-driven motion of 

a deformable drop through a fluid-fluid interface. We begin in 9 3.1 by presenting 
typical interface shapes at different times and proceed to discuss four specific features 
characteristic of the dynamics: mode of drop deformation (0 3.2), drop rise speed 
(9 3.3), increase of drop surface area (9 3.4), and the rate of drainage of fluid between 
the drop and interface (9 3.5). In all cases, we consider the motion of the drop through 
an interface in the limit of large distortions, a limit not previously studied. 

3.1. Drop and interface deformation 
3.1.1. Changing 1, the ratio of drop to lowerjuid viscosity 

In figure 3 we consider the effect of changing the viscosity ratio 1, the ratio of 
drop to lower fluid viscosity, on the translation of a drop through an interface. We 
present simulations for 1 = 10, 1 and 0.1; y = 0.1, p = 0.2, L271 = 20 and L272 = 00. 

As the viscosity ratio 1 decreases, the magnitude of drop deformation at a given 
height above the interface increases. The rate at which the drop passes through the 
interface increases with decreasing 1. Furthermore, the viscosity ratio J. affects the 
rate of drainage of the film of fluid which surrounds the drop. In particular, for 
A = 10, the drop entrains a thick and nearly spherical shell of the lower fluid, whereas 
for 1 < 0(1) the drop entrains only a thin layer of the lower fluid. If the drop is 
sufficiently deformable, simulations with il = 1 and 0.1, the drop becomes extended as 
it enters the upper lower-viscosity fluid since the rise speed of the drop in the upper 
fluid is larger than in the lower fluid (recall that the Hadamard-Rybczynski rise speed 
for an isolated drop is inversely proportional to the viscosity of the external fluid 
and proportional to the density difference with the external fluid). For an isolated 
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t = 100 

A 

(a) y =  10 (b) y =  1 (c) y =  0.1 

FIGURE 4. Effect of changing the ratio of upper to lower fluid viscosity for y = 10, 
1 and 0.1 ; 1 = 1, a = 0.2, CBl = 20 and CB2 = co. 

drop, the time scale for deformation scales approximately as 1/(1 + A) (Rallison 
1984; Kojima, Hinch & Acrivos 1984) so that the 1 = 10 high viscosity ratio drop 
experiences significantly less distortion than the drops in the other simulations. 

3.1.2. Changing y, the ratio of upper to lowerfluid viscosity 

In figure 4 we consider the effect of changing the viscosity ratio y, the ratio of upper 
to lower fluid viscosity, on the translation of a drop through a fluid interface. We 
present simulations for y = 10, 1 and 0.1; A = 1, p = 0.2,Bl = 20 and B2 = co. Drops 
accelerate as they enter the lower-viscosity upper fluid and are extended (acceleration 
in a quasi-steady Stokes flow is permitted owing to a change in geometry, but does not 
contribute to the local force balance in the fluid). The extension continues and may 
lead to the breakup of the drop, which is examined further in Q 4. Drops decelerate 
as they enter a higher-viscosity upper fluid and develop a dimple or small cavity at 
the back of the drop. Careful examination of figure 4 reveals that for a given A, the 
volume of lower fluid entrained increases with decreasing y. 

3.1.3. Changing Bl and $92 

In figures 5 and 6 we consider the effect of changing the interfacial tension forces 
relative to buoyancy forces, corresponding to varying the parameters gAl and B2. 
Recall that increasing interfacial tension, or decreasing B, typically decreases the 
magnitude of interface deformation. In figure 5 we vary the Bond number of the 
drop; 31 = 2, 5, 20 and 100, A = 1, y = 0.1, p = 0.2, and 8 2  = 00. The rate at which 
the drop passes through the interface changes very little even though the shapes are 
different. 

In figure 6 we change the Bond number of the interface; B2 = 5, 20 and 100, 
A = 1, y = 0.1, p = 0.2, and B1 = 20. Not surprisingly, increasing B2 increases the 
rate at which the drop passes through the interface. For the B2 = 5 simulation, a 
dimple or indentation develops at the back of the drop. Notice that at t = 40 the film 
thickness is approximately the same for all the simulations (figures 5 and 6) indicating 
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0 lo 0 lo 0 lo 0 lo 

(a) 99, = 2 (b) 991 = 5 (c) 99, = 20 (d )  991 = 100 

FIGURE 5. Effect of changing gl for g1 = 2, 5, 20 and 100; 1 = 1, y = 0.1, = 0.2, and 5?2 = co. 

0 lo 

(a) 99, = 5 (b) 99, = 20 (c) w, = 100 

FIGURE 6. Effect of changing .4?2 for = 5, 20 and 100; 1 = 1, y = 0.1, = 0.2, and 99, = 20. 

that the rate of film drainage is controlled by the fluid viscosity ratios and is largely 
independent of and 9?2 for the limits studied here. 

3.2. Modes of drop deformation 
Studies by Kojima et al. (1984), Koh & Leal (1989, 1990) and Pozrikidis (1990~) 
demonstrated that translating non-spherical drops at low Reynolds numbers are 
unstable if the interfacial tension stresses are not sufficiently large to return the drop 
to a spherical shape. The shape is unstable in the sense that the drop may deform 
continuously with two possible modes of deformation: 

(1) An initially prolate drop becomes further elongated, the front of the drop 
develops a nearly spherical shape, and the back of the drop forms an ever-elongating 
tail, which may eventually break into a series of smaller droplets due to a capillary 
instability. 
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(a) a = y =  1 (b) a = 1 ,  y =  0.1 

FIGURE 7. Modes of deformation: (a )  cavity formation for 1 = y = 1 and (b )  drop elongation for 
1 = 1 and y = 0.1. For both simulations 931 = 932 = co and = 0.2. 

( 2 )  An initially oblate drop becomes indented at the back and a cavity develops 
inside the drop. For large Bond numbers, an ever-elongating annular tail develops. 

Drops passing through interfaces also exhibit two distinct modes of deformation 
analogous to the two modes of deformation of a single drop described above. In 
figure 7 we present two simulations illustrating ‘cavity formation’ and ‘elongation’. 
The only parameter varied is y, the viscosity ratio of the upper to lower fluids. For 
the simulation with y = 1 a cavity develops inside the drop and an annular tail forms; 
for the simulation with y = 0.1 the primary distortion is elongation. 

A common feature of all our simulations is that the drop initially develops a 
dimple at the back since the drop slows down as it approaches an interface. The 
distorted drop shape, produced as a result of the interaction with the fluid interface, 
may be unstable in a manner analogous to a single drop in an unbounded fluid; 
subsequently, the drop may develop a cavity and possibly an annular tail if interfacial 
tension stresses are not sufficiently large to return the drop to, or retain, a nearly 
spherical shape. However, for the case where the drop enters a lower-viscosity fluid, 
the drop becomes elongated, with the effects of the elongation dominating the effects 
of the initial indentation, though a small dimple persists at the back of the drop. At a 
given height above the interface, the numerically calculated surface area of the drop 
with a cavity is larger due to the additional surface area of the cavity. 

3.3. Rise speed 
In figure 8 we present drop rise speeds as a function of position. The rise speed 
is defined as the velocity of the front of the drop along the axis of symmetry. The 
position is defined by the height of the front of the drop relative to the initial position 
of the fluid-fluid interface. The four set of curves, figure 8(a-d), correspond to the 
simulations presented in figures 3-6. 

As the viscosity ratio of the drop decreases, the rise speed increases, both as the 
drop approaches the interface (with variations largely determined by the Hadamard- 
Rybczynski speed), and as the drop passes through the interface (figure 8a).  Not 
surprisingly, as the viscosity ratio of the upper fluid increases, the rise speed of the 
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FIGURE 8. Rise speed of the top of the drop as a function of the position of the top of the drop. 
Results correspond to figures 3-6: (a) L = 10, 1 and 0.1 with y = 0.1, p = 0.2, Bl = 20, 932 = co, 
( b )  691 = 5, 20 and 100 with I = 1, y = 0.1, p = 0.2, B2 = co, ( c )  = 5, 20 and 100 with I = 1, 
y =0.1, p =0.2, $81 = 20, and ( d )  y = 10, 1 and 0.1 with I = 1, p =0.2, B1 = 20, B2 = a. 

drop decreases (figure 8d). In the limit where the drop attains a (nearly) steady 
shape far from the boundary, we expect the rise speed to approach a steady state 
determined largely by the Hadamard-Rybczynski value with some modification due 
to entrained fluid. For large Bond numbers the drop becomes highly deformed and 
may not achieve a steady shape. The numerical method does not allow us to study 
the motion of drops to sufficient distances through the interface that the asymptotic 
rise speed is approached. 

Changing the interfacial tension of the drop for large Bond numbers (981 > 5)  
does not significantly affect the rise speed (figure 8b). As the interfacial tension of 
the interface is increased, i.e. as B2 is decreased, the rise speed of the drop decreases 
(figure 8c). In particular, the minimum rise speed decreases as B2 decreases. However, 
as the drop moves away from the interface, smaller values of ,982 result in faster rise 
speeds due to an enhanced constriction of the interface around the extended drop 
(compare the curves in figure 8c for B = 5 with the curve for positions greater than 4). 

For a wide range of parameters, the drops reach a minimum rise speed when the 
front of the drop is at a distance of about 0.5 to 2.5 drop radii above the initial 
position of the fluid-fluid interface. We observe in figure 8(a) that low viscosity drops 
reach their minimum rise speed at a shorter distance past the initial interface position 
than high-viscosity ratio drops because the rate of film drainage is greater and the 
drops deform more rapidly. The reason drops reach a minimum rise speed above 
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13 

-4 -2 0 2 4 -4 -2 0 2 4 
Position Position 

FIGURE 9. Surface area of drop as a function of the height of the top of the drop. Results correspond 
to figures 3 and 4: (a) 1 = 10, 1 and 0.1 with y = 0.1, p = 0.2, Bl = 20, g2 = 00, and ( b )  y = 10, 1 
and 0.1 with 1 = 1, fi  = 0.2, Bl = 20, B2 = co. 

the interface is that interface deformation results in additional forces resisting drop 
translation : ‘negative’ buoyancy forces associated with the dense lower fluid displaced 
vertically and interfacial tension forces. The latter are typically small for 972 > O( 1). 

3.4. Drop surface area 
In figure 9 we present the drop surface area for the simulations presented in figures 3 
and 4. For the case of drops entering a lower-viscosity upper fluid, figure 9(a), at a 
given height above the interface the surface area is larger for drops with low viscosity 
ratios A. Since the rate of deformation scales approximately as 1/(1 + A) while the 
drop approaches the interface and as l / ( y  + A) while the drop moves away from the 
interface (i.e. the largest viscosity sets the timescale for deformation), drops with a 
low viscosity ratio deform faster than drops with a high viscosity ratio. 

The effect of y is shown in figure 9(b). First we consider the simulation with y = 10 
which has a maximum in the surface area. The drop’s surface area increases as the 
drop approaches the interface as a result of the drop spreading and flattening, and 
then decreases as the drop passes through the interface. While passing through the 
interface, the drop becomes more spherical (figure 4a) and the surface area decreases 
even though a cavity is forming. 

Next we compare the simulations with y = 1 and 0.1. The cavity which develops 
for y = 1 results in a slightly increased surface area compared to the simulation with 
y = 0.1 for positions less than 3a. As the drops continue to pass through the interface, 
the effect of elongation for y = 0.1 results in a greater increase in surface area than 
the simulation with y = 1. 

3.5. Gap thickness 
We next consider the rate at which the film drains for large Bond numbers and /? < 1. 
Figure 10 illustrates the evolution of the gap thickness for the simulations presented 
in figures 3-6. We note that film drainage has been a primary focus of many previous 
investigations, e.g. the limit p = 1 has been studied numerically by Chi & Leal (1989) 
for 0.9 < g < 45, and analytically by Yiantsios & Davis (1990) for BGl.  Chi & 
Leal demonstrated that drops approaching their homophase may develop a dimpled 
mode of film drainage; dimples may form under similar conditions for two translating 
drops (Manga & Stone 1993). However, for the range of parameters considered here, 
namely large Bond numbers, gi > 5, a dimple is not observed to form. We suggest 
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FIGURE 10. Gap thickness h / a  between the top of the drop and the interface along the axis of 
symmetry. Results correspond to figures 3-6: (a) 1 = 10, 1 and 0.1 with y = 0.1, p = 0.2, 93'1 = 20, 
93'2 = co, ( b )  91 = 5, 20 and 100 with 1 = 1, y = 0.1, p = 0.2,92 = co, (c) 93'2 = 5, 20 and 100 with 
1 = 1, y = 0.1, p = 0.2, 93'1 = 20, and (d) y = 10, 1 and 0.1 with 1 = 1, f i  = 0.2, 98, = 20, 93'2 = 00. 

that since the drops are passing through the interface, p < 1, the continual translation 
of the drops prevents the formation of a dimple. Using the nomenclature of Chi & 
Leal (1989), only uniform and rapid drainage occur. Yiantsios & Davis (1991) found 
that dimples always form for B-el. 

The results presented in figure 10(a) indicate that at a given position, the film of 
fluid coating the drop is thinnest for low viscosity ratio drops. As drops with a high 
viscosity ratio enter a lower-viscosity fluid (y < 1) they become coated with a thick 
layer of the lower fluid (the simulation with 1 = 10 in figure 3) since high-viscosity 
drops act to retard film drainage whereas low-viscosity drops provide little resistance 
to film drainage. Comparing film thickness for a drop at a given position above 
the interface, a thinner film develops as 282 decreases (figure 1Oc) and y increases 
(figure 10d) since in both cases the drop translates more slowly and more time exists 
for film drainage. The Bond number of the drop has little effect on film drainage for 
moderate to large Bond numbers, Bl > 5 (figure lob). 

4. Experimental results 
Owing to limitations of the numerical approach employed in 9 3, in particular the 

numerical difficulty resolving thin films separating two distinct phases, there are a 
number of features we could not consider fully, for example, (i) the break-off of the 
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drop from the interface which requires the interfacial-tension-driven constriction of 
the thin column of fluid entrained by the rising drop, (ii) the breakup of the drop as 
it is extended when passing from a higher to lower viscosity fluid, and (iii) the motion 
of multiple particles through an interface. In this section we consider experimentally 
the long-time evolution of the different fluid phases as bubbles and rigid spheres pass 
through fluid-fluid interfaces. The numerical procedure employed in tj 3 allows us to 
consider only 0.1 < i < 10, thus the experiments extend the results to the limits iel 
and i+l.  

4.1. Experimental apparatus 
The experiments are performed in a rectangular glass tank with a height of 19 cm, 
and a base 15 cm x 31 cm. The tank was filled with either corn syrup (bottom) 
and polybutene (top), or glycerin (bottom) and polybutene (top). The corn syrup was 
coloured with red food colouring in order to enhance the visual contrast between the 
two fluid layers. The Reynolds numbers 92 characteristic of the translation of bubbles 
and particles are small in corn syrup and polybutene, 92 < 0.05, but in glycerin may 
be as large as 92 = O(O.l-1). An estimate of the interfacial tension between corn 
syrup and polybutene and between glycerin and polybutene was determined using the 
pendant drop technique (Fordham 1948). We measured ~7 = 0.028 0.006 N m-l for 
corn syrup and polybutene and ~7 = 0.022 & 0.004 N m-l for glycerin and polybutene. 
The error estimates are based on measurement uncertainties. The ‘relaxing drop 
method’ (Tjahjadi, Stone & Ottino 1994) was also used to confirm the pendant drop 
results, and provided similar results, but with larger experimental uncertainties. 

Typical bubble and particle radii are 1 cm. Thus in the experiments wall and 
boundary effects should be small so that boundary effects should have little qualitative 
influence on the experimental results presented below. 

4.2. A single bubble passing through an interface 
In figures l(a,b) we presented photographs of the translation of an air bubble through 
an interface and into a less-viscous fluid. In figure 11 we present the complete sequence 
of experimental observations, and focus on the deformation of the air bubble. As the 
bubble approaches the interface it becomes slightly oblate or flattened. Notice that 
the bubble has a small tail in the first photograph. Owing to the large viscosity of 
the corn syrup and finite thickness of the layer of corn syrup, the tail initially formed 
as the bubble is released into the tank does not relax before reaching the interface. 
The bubble passes through the interface and becomes extended, forms a long tail and 
drags a long narrow column of the more dense and more viscous lower fluid across 
the interface. The long tail of air then breaks off from the bubble, leaving a highly 
distorted dumbbell-shaped bubble, which eventually breaks again to form two smaller 
bubbles (indicated by the arrows in the last photograph). Notice that in the final 
photographs, the two small bubbles have moved downwards, which results from the 
relaxation of the deformed interface due to downflow of the heavy entrained fluid. 

The general features of the experimental results at earlier times are similar to the 
numerical results shown in figure 3 for the simulation with A = 0.1; in particular note 
the bubble shape and the distinctive dimple at the back. In the numerical calculations 
the film of fluid between the drop and interface eventually becomes too thin to 
allow us to qualitatively compare the experimental and numerical results for times 
longer than those shown in figure 3. We note that the breaking of the air column, 
241, occurs via thinning into a narrow thread which appears to develop an even 
thinner secondary thread. In pendant drop experiments, Shi, Brenner & Nagel (1994) 
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FIGURE 11. Air bubble passing from a higher- to lower-viscosity fluid. Times and a scale bar are 
shown on the photographs. The upper fluid is polybutene, the lower fluid is corn syrup; 1 = 0, 
y = 0.15, Bl = 45, B2 = 40 and /l = 0.37. The Reynolds number is < in the lower fluid and 
< 0.05 in the upper fluid. The characteristic time p / A p * g a  = 1.2 s. 

observed a cascade of shape transitions involving a sequence of repeated neckings 
from an original thread shape; Shi et al.’s observations appear similar to the thread 
evolution in figure 11, although in their experiments b l  and inertial effects are not 
negligible. 

In figure l(c,d) we presented photographs of the motion of an air bubble through 
an interface and into a more viscous fluid. In figure 12 we present the complete 
sequence of experimental observations, and focus on the thin column of the lower 
fluid entrained through the interface by the rising bubble. The Reynolds number 
based on the lower fluid viscosity (glycerin) characteristic of the motion of the bubble 
towards the interface is 92 fi: 1. The Reynolds number based on the upper fluid 
viscosity (polybutene) characteristic of the motion of the bubble through and past the 
interface is smaller, 92 < 0.01. At a distance about 10 radii above the interface, the 
bubble breaks off from the lower fluid. The column of the lower fluid entrained by the 
bubble undergoes a Rayleigh or capillary instability and breaks up into smaller drops. 
The droplets consisting of the lower fluid then sediment and eventually coalesce with 
the lower fluid. We note that the thin film coating the bubble at t = 3 s has a nearly 
constant thickness, which is the uniform drainage mode (Chi & Leal 1989), and a 
dimple is never observed. 
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FIGURE 12. An air bubble passing from a lower- to higher-viscosity fluid. Times and a scale bar 
are shown on the photographs. The upper fluid is polybutene, the lower fluid is glycerin; 1 = 0, 
y = 0.02, = 4, 332 = 3.4 and /3 = 0.27. The Reynolds number is = 1 in the lower fluid and 
< in the upper fluid. The characteristic time p / A p z g a  = 0.012 s. 

FIGURE 13. A teflon sphere passing from a higher- to lower-viscosity fluid. Times and a scale bar 
are shown on the photographs. The upper fluid is polybutene, the lower fluid is glycerin; /z = a, 
y = 40, 992 = 1.4 and /3 = 0.23. The Reynolds number is < in the upper fluid and < 0.1 in the 
lower fluid. The characteristic time p / A p z g a  = 0.75 s. 

In figure 13 we examine the motion of a rigid teflon sphere sedimenting through 
an interface into a lower-viscosity fluid. The sphere remains coated with a thick layer 
of polybutene as it passes though the interface; by contrast, the bubbles in figures 11 
and 12 are not coated as they pass through the interface as expected since film 
drainage is enhanced for low-viscosity drops (see 8 3.5). The coated sphere proceeds 
to sink to the bottom of the tank. Since the fluid entrained by the sphere is buoyant 
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FIGURE 14. Streamlines due a translating drop passing through an interface: (a) a drop approaching 
the interface, ( b )  a drop passing through the interface and (c) a drop which has passed through the 
interface. Streamlines are calculated for 1 = y = 1, 98, = 5, 982 = co and = 0.2. In (c), since 
the interface is relaxing due to negative buoyancy (restoring) forces associated with the deflected 
interface, there is a stagnation point in the flow beneath the drop. 

relative to the lower phase, some of the entrained fluid eventually separates from the 
sphere and forms a drop (pictures not shown), which then rises through the lower 
fluid and coalesces with the upper fluid. Nevertheless, a thin coating remains on the 
sphere. The experiment in figure 13 is consistent with the results in figure 3 where 
we observed that drops with a large viscosity ratio ,I entrain a thick layer of fluid as 
they pass through an interface into a lower-viscosity fluid. 

In order to understand some of the features of the results illustrated in figures 
11-13, we show in figure 14 numerically calculated streamlines at different stages of a 
drop’s translation through an interface. Streamlines for a rising drop converge behind 
the drop and diverge in front of the drop. In figure 14(a) there is a stagnation point 
above the interface due to the relaxation of the interface at large radial distances away 
from the drop; as the drop approaches the interface, the wavelength of the surface 
deformation decreases (and the amplitude increases) so that the longest wavelengths 
of the surface distortion are always relaxing. Once the drop has passed through the 
interface, a stagnation point develops in the flow field behind the drop. The flow 
induced by the relaxing interface in figure 14(c) explains the downwards motion of 
the small bubbles in the final photographs shown in figure 11. 

5. Discussion: motion of multiple particles through interfaces 
Here we consider experimentally some of the implications of the numerical and 

experimental results discussed in $ 3  and $ 4 on the dynamics of more than one particle 
passing through a fluid-fluid interface. Specifically, we recall three observations which 
characterize the motion of a single particle through an interface : 

(1 )  particles slow down as they pass through an interface (figure 8); 
(2) drops with a high viscosity ratio entering a lower-viscosity fluid remain coated 

with a thick layer of fluid (figures 3a, 13); 
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FIGURE 15. Two teflon spheres passing from a higher- to lower-viscosity fluid. Times and a length 
scale are shown on the photographs. The upper fluid is polybutene, the lower fluid is glycerin; 
,I = co, y = 40, B2 = 1.4 and p = 0.23. The Reynolds number is < in the upper fluid and 
< 0.1 in the lower fluid. The characteristic time p/Ap2ga = 0.75 s. 

(3) a particle passing from a lower- to higher-viscosity fluid will entrain a column 
of the lower-viscosity fluid across the interface (figure 12). 

Here we discuss some of the consequence of items (1-3) for multiple particle 
dynamics. 

In figure 15 we present a sequence of photographs of two rigid teflon spheres 
passing through an interface into a lower-viscosity fluid. The spheres are initially 
vertically offset by 5 sphere radii and horizontally offset by more than 2 sphere 
radii. As the first sphere approaches and passes through the interface it slows down 
which allows the second sphere to ‘catch up’. The spheres then translate through the 
interface together, vertically align, and sediment as a ‘doublet’. In the experiment it is 
observed that the lower sphere translates laterally to become aligned with the upper 
sphere: lateral motion of the lower sphere, rather than the upper sphere, occurs 
since the lower fluid offers less resistance to motion because of its relatively low 
viscosity. 

The coagulation or clustering of particles is studied in figure 16. In the experiment 
a large number of teflon spheres, initially well distributed, are released into the upper 
fluid. Since the spheres slow down as they pass through the interface they tend to 
accumulate and cluster in the vicinity of the interface. In the experiment shown in 
figure 16, clusters of between 1 and 4 spheres pass through and detach from the 
interface entraining significant amounts of the upper fluid. The clusters entrain more 
fluid than the equivalent number of single spheres (compare figures 15 and 16 with 
figure 13). 
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FIGURE 16. Many teflon spheres passing from a higher- to lower-viscosity fluid. Times and a length 
scale are shown on the photographs. The upper fluid is polybutene, the lower fluid is glycerin; 
1 = co, y = 40, BAZ = 1.4 and in the upper fluid and 
< 0.1 in the lower fluid. The characteristic time p/Apzga = 0.75 s. 

= 0.23. The Reynolds number is < 

As a final observation we illustrate the effect of the entrained fluid on the motion 
and deformation of additional particles. In figure 17 we show two vertically aligned, 
equal-size bubbles passing from a lower- to higher-viscosity fluid. The first bubble 
entrains a column of the lower-viscosity fluid. The second bubble moves through the 
entrained fluid, experiences less viscous resistance, and develops a slightly elongated 
shape. In the limit of vanishing interfacial tension, the effect of such low-viscosity 
conduits has been studied experimentally by Olson & Singer (1985). The second 
bubble, in both the experiment shown here and the results of Olson & Singer 
for two miscible fluids, translates faster than the first bubble. These low-viscosity- 
ratio conduits may increase the rate of separation in buoyancy-driven particle-laden 
suspensions and may lead to the formation of vertically aligned structures. 

6.  Summary 
The numerical simulations presented in 9 3 illustrate features of dropinterface 

interactions. As drops approach and pass through fluid-fluid interfaces, significant 
deformation of both the drop and interface may occur for large Bond numbers 



Low Reynolds number motion of particles through fluid-fluid interfaces 297 

FIGURE 17. Two vertically aligned bubbles passing from a lower- to higher-viscosity fluid. Times 
and a length scale are shown on the photographs. The upper fluid is polybutene, the lower fluid is 
glycerin; i = 0, y = 0.02, gl = 3.4, = 0.27. The Reynolds number is w 1 in the 
lower fluid and < lo-’ in the upper fluid. The characteristic time p/Ap2ga w 0.012 s. 

= 2.7, and 

(characteristic of drops with radii greater than a few millimetres). A significant 
volume of fluid may be entrained by drops passing through stably stratified interfaces 
resulting in mixing and the disruption of the interface. The volume entrained increases 
as the viscosity ratio of the drop increases, and increases if the drop enters a lower- 
viscosity fluid. Experimental results presented in $ 4 illustrate the long-time evolution 
including breakup of the drop and entrained column of fluid. 

In $ 5, we observed that the spatial distribution of particles may change as particles 
pass through fluid-fluid interfaces. Rigid spheres entering a lower-viscosity fluid may 
form small clumps of particles. Particles passing from a lower- to higher-viscosity 
fluid entrain a column of the lower-viscosity fluid and such low-viscosity conduits 
affect the rise speed of additional particles. The numerical calculations allow us to 
understand many of the experimental observations. 
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NSF grants CTS8957043 and EAR9218923, and the Petroleum Research Fund, Grant 
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